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A complex Stokes flow has several cells, is subject to bifurcation, and its velocity field 
is, with rare exceptions, only available from numcrical computations. We present 
experimental and computational studies of two new complex Stokes flows: a vortex 
mixing flow and multicell flows in slender cavities. We develop topological relations 
between the geometry of the flow domain and the family of physically realizable flows; 
we study bifurcations and symmetries, in particular to reveal how the forcing 
protocol’s phase hides or reveals symmetries. Using a variety of dynamical tools, 
comparisons of boundary integral equation numerical computations to dye advection 
experiments are made throughout. Several findings challenge commonly accepted 
wisdom. For example, we show that higher-order periodic points can be more 
important than period-one points in establishing the advection template and extended 
regions of large stretching. We demonstrate also that a broad class of forcing functions 
produces the same qualitative mixing patterns. We experimentally verify the existence 
of potential mixing zones for adiabatic forcing and investigate the crossover from 
adiabatic to non-adiabatic behaviour. Finally, we use the entire array of tools to 
address an optimization problem for a complex flow. We conclude that none of the 
dynamical tools alone can successfully fulfil the role of a merit function; however, the 
collection of tools can be applied successively as a dynamical sieve to uncover a global 
optimum. 

1. Introduction 
The study of mixing by chaotic advection in Stokes flows has reached a certain level 

of maturity. By maturity we mean that several prototypical flows have been extensively 
studied ~ analytically, computationally, and experimentally - and that a few are 
thought of as well understood and have become emblematic of the general problem of 
chaotic advection (tables of examples are given in Ottino 1990 and Aref 1991). 
However, of the examples of prototypical Stokes flows only the eccentric cylinder flow 
and the cavity flow (Chaiken et af. 1986; Swanson & Ottino 1990; Leong & Ottino 
1989 a) have been the subject of simultaneous experimental and computational 
investigation. Not coincidentally, the eccentric cylinder flow has an analytical solution 
for the velocity field (Wannier 1950; Ballal & Rivlin 1976). Moreover, all of these 
systems are two-dimensional; only a handful of works have ventured into experiments 
involving three-dimensional flows (Kusch & Ottino 1992). Moreover, the cleanest 
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applications pertain to two-dimensional and simple ~ as opposed to ‘complex’ - Stokes 
flows. 

Streamline patterns in bounded flows consist only of closed recirculating cells and 
the streamlines that separate them. The separating streamlines may start and end at 
parabolic points on stationary surfaces or at hyperbolic points inside the fluid. We 
define a primary ceLl as a closed recirculation zone with some part of its bounding 
streamline in contact with at least one of the moving boundaries and a secondary cell 
as a closed recirculation zone with no part of its bounding streamline in contact with 
moving boundaries. Complex Stokesflows are then defined as those flows possessing 
secondary cells, i.e. flows where secondary cell motion is driven by contact with 
primary cells. So, for instance, drag flows in nearly square cavities are simple, while 
Moffatt’s corner flows or the flow within slender cavities are complex (Chien, Rising 
& Ottino 1986; Leong & Ottino 1989a; Moffatt 1964; Jeffrey & Sherwood 1980; Jana 
& Ottino 1992). 

There are two main objectives to this paper. 

(i) The presentation of new results for complex Stokesflows 
Here the focus is to define, develop, and analyse two examples of complex Stokes flows 
using a concerted combination of experiment and computation. A complex flow has 
several cells, is subject to bifurcation, and its velocity field is, with rare exceptions, only 
available from numerical computation. For steady flows we develop topological 
relations, study bifurcations and symmetries, and investigate how the forcing protocol’s 
phase hides or reveals symmetries. To characterize mixing patterns we apply dynamical 
tools, such as PoincarC sections, Melnikov’s method, periodic points and their 
manifolds, stretching along manifolds, and distributions of stretching throughout the 
flow. Comparisons of numerical computations to dye advection experiments are made 
throughout the paper. 

(ii) The critical evaluation of both old and new dynamical techniques 

Whereas the objective of (i) is self-evident, (ii) requires additional commentary. There 
has not been a thorough comparison, using the array of recently developed dynamical 
tools, between experiments and computation. The goal here is to consider many of 
these techniques applied to the analysis of chaotically advecting systems and extend 
them to the analysis of flows more general than simple flows with analytical solutions. 
The tools of analysis we will consider are the Melnikov method, PoincarC map, flow 
symmetries, periodic points, manifolds of hyperbolic periodic points, stretching 
distributions, dye advection experiments, and adiabatic methods. Passing comments 
are made regarding the use of mixing windows and stretching function distributions. 
Two questions arise. Given a diverse but incomplete body of techniques for the analysis 
of mixing systems, what is the best way to evaluate the known techniques so as to 
obtain a coherent structure for analysing general mixing flows? What kind of balance 
exists between the information obtained and the computational cost? 

These issues have to do with efficient extensibility and meaningful extrapolation. 
New techniques developed and vetted on a single prototype flow may not readily 
generalize when extended to the analysis of new or more complex flows. In fact, much 
of the development of new techniques has been made easier by the fact that several 
prototypical flows have an exact closed form expression for the velocity field. In some 
cases this allows the derivation of fully analytical results. But more importantly, in all 
cases, this makes feasible numerical integrations to the accuracy required for chaotic 
advection studies. One reason for a particular tool’s lack of extensibility may be that 
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it was developed on a flow with an analytically known velocity field: when u must be 
numerically obtained, a tool may become infeasible or unwieldy to use. When pushed 
into use for the analysis of new or more complex flows, it is not clear which techniques 
will remain appropriate and useful, and which ones will become in practice too difficult 
to apply. When no techniques exist to answer certain questions, rules of thumb often 
grow up to cover the gaps. The issue here is to decide what questions the existing 
analysis is able/unable to answer and to decide if meaningful extrapolation exists. In 
chaotic advection studies these rules of thumb have mostly to do with extrapolating 
local information to anticipate global trends, for instance that the best mixing comes 
from the manifolds associated with the lower-order periodic points with the largest 
eigenvalue, or extrapolating asymptotic results to anticipate short-time behaviour, for 
instance using PoincarC sections to anticipate the mixing results of a few periods. These 
extrapolations are made because some things are easily calculable and the implicit hope 
is that they will shed some light on those that are not readily calculable. From the 
application of incomplete analysis to only simple mathematical and experimental 
model flows, a ‘common wisdom’ grows up, most of it having to do with the global 
trends one might expect from only knowing local information. The question is to see 
if this wisdom is really at the level of rules of thumb, or whether it is often violated 
outside the simplest of flows. 

In order to provide a common, versatile, and exacting testbed for tools and 
techniques, we have developed a new flow geometry, the vortex mixing flow (VMF) 
and have extended investigations in driven cavity flows to multicellular cavity flows 
(MCF). The geometry of the VMF consists of three coaxial cylinders, two of smaller 
diameter inside a third. The two inner cylinders rotate independently to drive the flow. 
The VMF may be thought of as a realization of the blinking vortex model (Aref 1984) 
or an idealization of the cross-sectional flow in a twin-screw extruder, in some sense an 
intermediate between a simple mathematical model flow and an industrially important 
application. The most important characteristics of the VMF are that it easily produces 
a variety of complex Stokes flows, it has no analytical solution for the velocity field, 
and it is a relatively easy experiment to build and operate. 

The variety of different complex flows is a consequence of the existence of flow 
bifurcations. Many parameters are available to tune the flow, several of which are 
cylinder placement and shape, relative cylinder size, and rotation speed. This defines a 
multiparameter bifurcation problem and the many different complex Stokes flows 
unfold from the many solution branches of the bifurcation problem. Here we will 
restrict ourselves to varying only two parameters : a geometric parameter governing 
cylinder placement, and a forcing parameter governing the speed ratio of the inner 
cylinders. In the case of the MCF the parameter space consists of the aspect ratio of 
the cavity and the speed ratio of the walls; this system yields a more compact 
presentation of bifurcation results. 

We finish our assessment of dynamical tools in 4 7 by posing a complex test problem. 
The problem is to find the optimum mixing configuration for the VMF. A fairly 
complete characterization of the state of mixing is provided by the stretching 
distribution and our initial efforts were to determine if this or any of the other tools 
could fill the role of the merit function of traditional optimization. We find, however, 
that no single existing dynamical characterization satisfactorily fulfils this role. 
However, the collection of tools can be applied successively as a ‘sieve’ to remove most 
of the parameter space and uncover an approximation to a global optimum. 

The rest of the paper is arranged as follows. The geometry of the example flows, 
along with numerical solutions using boundary integral equation methods and a 
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description of the experimental set-up, is presented in 92. Section 3 focuses on the 
piecewise-steady flows that force chaotic advection, specifically topological invariance 
relations, flow bifurcations, and symmetry considerations. Section 4 focuses on the 
dynamical tools : Poincare sections, short-time dye advection experiments, periodic 
points, manifolds of hyperbolic periodic points, stretching, and the Melnikov method. 
In 9 5  we establish, using three methods, that the dye advection patterns in chaotic flows 
are qualitatively independent of the specific waveform of the boundary motion forcing 
for a broad class of waveforms. Section 6 focuses on the advection characteristics of 
dynamical systems with slowly varying parameters and the crossover from adiabatic to 
non-adiabatic behaviour. Section 7 contains the test problem and 98 summarizes the 
uses and limitations of the dynamical tools and prioritizes the available tools for use 
in analysing a new mixing flow. 

2. Flow systems 
2.1. Geometries and parameters 

Figure 1 (a)  shows the VMF geometry. An outer cylinder of radius R, houses two inner 
cylinders of equal radii Ri. Fluid fills the space between the inner and outer cylinders. 
The centres of the inner cylinders lie along a diameter of the outer cylinder and are set 
symmetrically about the centre. The ratio RJR,  for this paper is fixed at 4. Inner- 
cylinder placement characterizes the remaining family of geometries and is para- 
metrized by the cylinder eccentricity 

(1) e = d/ (  R ,  - Ri), 
where d is the distance between the centres of the outer and inner cylinders. The inner 
and outer cylinders rotate in place to force the flow. If a,, a,, and 52, are the angular 
velocities of respectively the outer cylinder and inner cylinders and v is the kinematic 
viscosity of the fluid, then 

Re = [52: R: + (52; + 52;) R$ ( R ,  - R i ) / v  (2) 

= R,/52,, (3) 

defines the Reynolds number. When the outer cylinder is stationary, the speed ratio of 
the inner cylinders of the VMF, 

which may be positive or negative for co- or counter-rotating motion, characterizes the 
forcing. The Strouhal number is 

R, - Ri 
St = 

[52: R: + (525 + 52;) R$ T ’  (4) 

where T is the period of the flow. 
Figure 1 (b) shows the MCF geometry. A rectangular box of height H and width W 

has fluid inside. The sidewalls are stationary and the top and bottom walls move 
tangentially with velocities U ,  and U ,  respectively. The MCF has only two parameters 
available to tune the steady-state flows. These are the aspect ratio 

A =  W / H  ( 5 )  

and the speed ratio r = U,/U,. (6)  
The Reynolds number for the MCF is 

(Ui+U;) iH  
Av 

Re = (7) 
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FIGURE 1. Geometries and definitions for the example flows: (a) vortex mixing flow, 
(b)  slender cavity flow. 

and the Strouhal number is 

H2/ W 
T(U5 + 17:); St = 

Leong & Ottino (1989a) studied a similar flow with A > 1, for which one primary cell 
fills the cavity, and Leong (1990) presented a few results for slender flows. For A < 1 
a series of cells fills the cavity, the exact number depending on A and weakly on r. 

2.2. Numerical evaluation of velocity Jields 
None of the flows presented above has analytical solutions. Numerical solutions 
are sought using the boundary integral equation methods (BIEM) (Higdon 1985; 
Pozrikidis 1992) for the VMF and the finite difference method (Burggraf 1966; Pan & 
Acrivos 1965) for the MCF. The numerical integration of chaotic particle trajectories 
requires very accurate velocities. In fact, comparing calculated advection patterns to 
experiment, or comparing particle trajectories obtained from a numerical velocity field 
with an available analytical velocity field are stringent tests for numerically obtained 
velocity fields: small changes in the velocity field give rise to very different advection 
patterns. Recent calculations in our laboratory have shown that for Stokes flows in 
complicated domains sufficiently accurate velocity fields can be obtained using BIEM. 
Finite difference calculations are also reported by Leong (1990) and Ling & Schmidt 
(1991). As the BIEM may be somewhat less familiar, we present a brief description in 
Appendix A. 

2.3. Experiments 
The experimental apparatus used to produce the vortex mixing flow is a version of the 
eccentric cylinder apparatus of Swanson & Ottino (1990), modified by the addition of 
an independently driven second inner cylinder; a diagram is shown in figure 2. The 
inner diameter of the outer cylinder is 15.24 cm and the outer diameter of the inner 
cylinders is 3.81 cm. The arms holding the inner cylinders also mount motors (Bodine 
NSH-1 lDS), pulleys, and drive belts. The arms are designed for easy placement of the 
inner cylinders in order to obtain different eccentricities. Accurate cylinder placement 
is achieved by use of template covers of the outer cylinder, leading to an accuracy in 
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(b)  

ner-cylinder mount cyli 

FIGURE 2. Schematic of the vortex mixing flow apparatus: (a) top view, (b) front view. 

e of 0.05 YO. The cylinder motion is computer controlled using Keithly System 570 Data 
Acquisition software. Motors are calibrated before experiment runs and rotation is 
accurate to about 1"; speeds are accurate to 1 YO. The control schemes used in this work 
are similar to those in Swanson & Ottino (1990). In the VMF the left inner cylinder 
always rotates in the clockwise direction and the right inner cylinder rotates either 
clockwise or counterclockwise to produce respectively co- and counter-rotating 
motion. The apparatus used to produce the multicell cavity flow is described in Leong 
& Ottino (1989~). Motors and the control scheme are similar to those of the VMF. In 
the MCF the top wall always moves from left to right and the bottom wall moves either 
right to left or left to right to produce respectively co- and counter-rotating motion. 

The fluid used in all experiments is glycerin (Emery 916 Glycerin 99.7%) with a 
viscosity - 7 P and density 1.2 g ~ m - ~ .  The inner cylinder rotation speeds are 0.03-0.07 
rev s-', giving a Reynolds number range of 0.08-0.2 and a Strouhal number range of 
0.02-0.3. Fluid fills the outer VMF cylinder to a depth of 10 cm with a 2-3 cm layer 
of FomblinB Y-L VAC 06/6 (perfluoropolyether vacuum-pump oil, Aldrich Chemical 
Company) at the bottom to eliminate bottom effects. For flow visualization a neutrally 
buoyant solution of fluorescent dye (Cole-Parmer, type 295- 1 5 ,  295- 17) in glycerin is 
used. The dye is illuminated from above with UV lights (long range, Spectronix XX- 
40) and other light sources are removed. Blobs of dye are injected 0.5-1 cm below the 
upper surface to obtain maximum illumination and avoid free-surface effects. The 
mixing patterns are photographed through the glass bottom of the outer cylinder with 
a Nikon 2004 camera, Nikkor micro f/4.0 105 mm lens, and Kodak Ektachrome 100 
HC colour slide film. For convenience the photographs are taken through a mirror 
angled at 45" to the cylinder bottom. 

3. Piecewise-steady flows 
The simplest way to force time dependence in a Stokes flow is to alternate between 

a sequence of steady flows with different streamline patterns. Streamline cros- 
sing - superposed patterns showing non-tangential intersections - is a necessary and 
sufficient condition for generating chaos (see $4.4). Thus, when presented with a new 
complex flow, the initial investigation should focus on finding the possible steady 
streamline patterns. Once the steady flows are in hand, it is possible to predict 
streamline crossings, assess which flows will mix and, quite possibly, be able to infer 
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FIGURE 3. A set of nine possible streamline portraits of the vortex mixing flow. RJR, = 4, e = 0.67. 

SZ,=O, S Z o =  I ;  (e) SZ, = I ,  R, = O .  SZ,  = 1 ;  cf) 52, = - 1 ,  Q , = O ,  52, = I ;  (g )  SZ, = I ,  52,=-1, 
(a) n, = I ,  nB = 0, no = 0 ;  (b) a, = 1, 8, = 1, 52, = 0 ;  (c) n, = 1, 52, = - 1, 52” = 0 ;  (d )  9, = 0,  

no = 1; (h) 52, = 1, n, = 1 , 9 ,  = 1; (i) 9, = 1 , Q ,  = 1, SZo = -1. 

the extent of the mixing regions as well. The steady flows are arranged in sequences 
known as protocols, but in complex Stokes flows flow bifurcations are possible and 
even a simple protocol may involve many topologically different flows. The available 
flows are the physically realizable steady streamline patterns and the symmetry 
transformations of these patterns. The symmetries of the protocols are the symmetries 
of the chaotic flows as well. This fact can be exploited to reduce the computational 
burden of many of the dynamical tools considered in $4. Therefore, any chaotic 
advection study begins with a study of steady flows. In this section we begin by showing 
a topological result that allows us to infer almost all families of physically realizable 
steady flows for a given geometry. Then we show representative sequences of flow 
bifurcations, and finally discuss how the specific choice of periodic protocol affects flow 
symmetries. 

3.1. Critical points and.fiow topology 

Complex Stokes flows can produce a rich array of topologies. Representative sets of 
streamline portraits for the VMF are shown in figure 3 and for the MCF in figure 4. 
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FIGURE 4. Typical streamline portraits of the cavity flows: (a) A = 0.75, Y = - 1 ;  (b)  A = 0.75, 
Y = 1 ;  (c) A = 0.25, r = - 1; (d )  A = 0.25, r = 1 .  

An array of cellular flows is possible depending upon the eccentricity or aspect ratio of 
the system and the velocity ratio of the walls or cylinders. For the VMF for fixed 
geometry and l Q K l  = 0 or 1, where K = o (outer cylinder), A ,  or B, it is possible to show 
by symmetry arguments that there are only nine combinations of boundary motions 
that produce topologically distinct non-trivial patterns. Figure 3 shows such a set of 
patterns. For the MCF the only bifurcation is to add or subtract one cell (we do not 
consider corner Moffatt cells because of their small size). The recirculating regions in 
these flows arise either due to flow separation from stationary walls or due to the 
formation of separatrix streamlines within the fluid. The points of flow separation or 
reattachment and the points from which streamlines in the form of separatrices 
emanate are the critical points of the flow and require special attention. Elliptic and 
hyperbolic critical points occur inside the fluid. Fluid elements experience rotational 
motion about an elliptic point but stretch and compress about a hyperbolic point. 
Parabolic critical points occur on the stationary surfaces and for bounded flows always 
appear in pairs where they are commonly known as the flow separation and 
reattachment points. Apart from vanishing velocity, the vorticity also vanishes at 
parabolic points. 

The flow pattern in Stokes flows is uniquely determined by geometrical parameters, 
e.g. eccentricity, aspect ratio, ratio of radii, etc., and boundary conditions, e.g. the 
instantaneous velocity ratio of the tangentially moving boundaries. Even after 
specifying these parameters, however, it is difficult to qualitatively predict the correct 
streamline pattern without resorting to the expense of exact computation. To partially 
address this difficulty it is useful to derive relations that allow, knowing only 
information along the boundary, predictions of the interior pattern. 

Some topological ideas are useful in this regard. The Poincare' index of a critical 
point is obtained by travelling counterclockwise once around the point in a circular 
path and counting the number of counterclockwise revolutions made by a vector with 
its base on the path and its head always pointing in the direction of the flow. The 
Poincart index of a hyperbolic point is - 1, of an elliptic point is I ,  and of a parabolic 
point is -$ The Euler number 6 of a surface is defined as the sum of the Poincark 
indices of the critical points on the surface. An n-fold torus is said to have genus n. The 
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FIGURE 5. Sketch of vortex mixing flow 011 the surface of a two-fold torus: (a) represents the flow of 
figure 3(a) and the points A, B, C, D, E and F represent the parabolic points on the stationary walls; 
(b) is the image of (a)  which together with (a)  constitutes the flow on the surface of a two-fold torus, (c ) .  

genus of a sphere is 0, of a one-fold torus is 1, of a two-fold torus is 2, and so on. 
Consider now the area-preserving flows on a surface of genus n. The Poincare index 
theorem states that the Euler number and genus are related b y ( = 2 - 2n (Flegg 1974). 
The key step in applying these topological results to fluid flows is to convert the flow 
domain into an n-fold torus. We observe that the phase space of the VMF is 
topologically equivalent to one half of a two-fold torus in that the top half of the three- 
dimensional surface of the two-fold torus can be flattened and deformed into the VMF 
domain (see figure 5 and keep in mind that the critical points must be counted twice 
to account for the backside of the torus). Thus the Euler number of the VMF is - 1 
and the topological invariance relation for the VMF is 

:YE - (NII + ;nrP) = - 1, (9) 
where NE is the number of elliptic points, NH is the number of hyperbolic points, and 
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(b) 

FIGURE 6. Possible separation patterns for the vortex mixing flow; e denotes the location of an elliptic 
point and p the location of a parabolic point; R J R ,  = 4, Q, = 1 ,  52, = 0, Q0 = 0: (a) pattern 
determined via computation, (b) pattern ruled out by computation. 

N p  is the number of parabolic points. By similar arguments two cavity flow patterns 
can be drawn on the surface of a regular octahedron which is topologically equivalent 
to a sphere. Thus the companion relation for cavities is 

N E - ( N H + p P )  = + 1. (10) 

An examination of all the streamline portraits in this paper (figures 3, 4, 7-9) verifies 
adherence to these invariance relations. 

Topology aids in classifying flows with a rich bifurcation structure. A typical 
bifurcation sequence in the VMF on varying only one parameter might involve a dozen 
distinct streamline patterns (as opposed to a flow in an essentially infinite domain that 
has rather simple structures (Ng 1989)). As we show below, these complex Stokes flows 
have many distinct patterns that need some scheme to classify them. Even though one 
may use relations (9) and (10) to restrict consideration to realizable families of flows, 
topology alone cannot of course uniquely determine the flow pattern. For instance 
figure 6 shows candidate patterns for the VMF with one inner cylinder in motion. 
Figures 6 (a )  and 6(b) both satisfy (9). The easiest numerical check, without computing 
the entire streamline portrait, is to calculate the shear stress on the outer cylinder and 
then count the number of times the shear stress changes sign. The check in this case 
reveals two sign changes corresponding to two parabolic points on the outer cylinder, 
confirming figure 6 ( a )  as the real flow. 

3.2. Flow. bifurcations 
Both the VMF and MCF exhibit a rich flow bifurcation structure as their geometry and 
forcing parameters are varied. Obviously the mixing behaviour depends very strongly 
on the flow’s position in the bifurcation diagram. Representative examples of VMF 
bifurcations are presented in figures 7-9. The flow patterns in figure 7 are obtained 
when only one inner cylinder is in motion and the eccentricity varies. Figure 8 is 
obtained when the inner cylinders move at equal speeds in the same direction and the 
eccentricity varies. Figure 9 is obtained with fixed eccentricity and varying the speed 
ratio of the inner cylinders. Many other bifurcations occur for other parameters, e.g. 
outer-cylinder motion, counter-rotating inner cylinders, or variation of the ratio of 
radii; however, these are not presented here. MCF bifurcations add a new secondary 
cell as the cavity becomes more and more slender (aspect ratio A becoming smaller). 
This is considerably simpler than the pattern changes in the VMF and so the results 
for the MCF can be presented in explicit bifurcation diagrams (figure 10) showing the 
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FIGURE 7. Flow separation patterns as a function of eccentricity for the vortex mixing flow with one 
cylinder rotating, RJR,  = 4: (a) e = 0.40, (b) e = 0.53, (c) e = 0.67, ( d )  e = 0.76, (e) e = 0.80, ( f )  
e = 0.93. 

FIGURE 8. Flow separation patterns as a function of eccentricity for the vortex mixing flow with 
corotating inner cylinders; R,/R, = 4, 0, = 1, 51, = 1 : (a) e = 0.53. (6)  e = 0.67, (c) e = 0.80. Flow 
bifurcation between patterns (b) and (c) occurs at e = 0.7045. 

number of cells as a function of the velocity ratio of the walls and aspect ratio of the 
cavity. (Corner or Moffatt cells are negligibly small compared to the size of the cavity 
and are not counted in figure 10.) Since the diagram is symmetric with respect to unity 
velocity ratio, only half the bifurcation diagram is shown in figure 10. 

3.3. Time-periodic protocols and symmetries 
Once the steady-state flows are known, the simplest way to generate time dependence 
in the velocity field and hence chaotic motion is by piecing together steady flows in 
time-periodic sequences known as protocols. Suitable periodic motions of the 
boundaries of the flow domain generate time-periodic flows. The generic form of 
boundary velocities is 

(1 1 a, b) U A  = UA(1+5IAfA(t)), U B  = U B ( 1  -e,f,(t)), 
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FIGURE 9. Flow separation patterns as a function of the speed ratio with corotating inner 
cylinders; RJR, = 4, e = 0.67: (a) r = I, (h)  r = 5 ,  (c) r = 20, ( d )  r = 03, (Q, = 1 ,  0, = 0). 

where uA is the linear or angular velocity of the moving element A with mean velocity 
U,, and similarly for u,. The perturbation parameters E , , ~  determine the degree to 
which each boundary deviates from the mean velocities andfA,,(t) are the specific 
waveforms of the boundary motion. It is common to use a symmetric form of (1 1) and 
set U ,  = U, = U, = tg = t‘, andf, = f B  = f(t). Equations (1 1) fix the relative phase 
of the boundary motions at n. If e = 0, the boundaries move with constant velocities 
and the fluid particles follow regular trajectories: there is no chaos. The perturbation 
parameter e determines the degree of chaos. One should especially note that in mixing 
studies the perturbation from integrability tz need not be small and in most cases is in 
fact quite large. Almost all studies takeflr) to be a single-frequency undulatory motion, 
such as a square wave, sine wave, or sawtooth wave with the boundaries either co- or 
counter-rotating, although there is one theoretical study that considers quasi-periodic 
forcing (Beige, Leonard & Wiggins 1991). 

Once the degree of deviation from integrability ( E  > 0) is set, it is common to 
parameterize the nonlinearity by the angular or linear boundary displacement per 
period, which is proportional to the energy input to the system per period. Protocols 
are usually arranged so that each motion imparts an equal ‘amount of energy’, i.e. 
linear displacements are made equal. The angular displacement per period of the inner 
cylinders in the VMF is 

T 

13 = lo Q(t)dt, (12) 

where T is the period of the boundary motion; the linear displacement per period of 
the top and bottom walls in the MCF is 

D = w J o  l T  Udt. 
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FIGURE 10. Bifurcation diagrams for a slender rectangular cavity flow. Numbers denote the number 
of primary cells. (a) Top and bottom walls move in opposite directions, (6) top and bottom walls 
move in the same direction. 

Protocol A (PA) 

t 
Protocol B (PB) 

0 TI2 T t 0 TI4 3Tl4 T t 

FIGURE 11. Time-periodic square-wave protocols. For the vortex mixing flow in protocol A each of 
the inner cylinders rotates alternatively through an angle 0 starting with the left inner cylinder. In 
protocol B the left inner cylinder rotates through an angle H/2 both before and after the right inner 
cylinder rotates through 0. The plain rectangles describe the motion of the left inner cylinder and the 
shaded rectangles describe the motion of the right inner cylinder. For the cavity flow; the angle 0 is 
replaced by the displacement D defined in (13) and the top wall moves first. 

Mixing protocols dictate the symmetries of the flow. Figure 11 shows two particular 
square-wave protocols that will be used in the rest of the paper. In protocol A (PA) 
each of the moving elements accomplishes full displacement without interruption ; in 
protocol B (PB) the first moving element describes its displacement per period in two 
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FIGURE 12. Symmetries of the component flows: (a) Fq, produced by the rotation of the left inner 
cylinder; (b) F,, produced by the rotation of the right inner cylinder; RJR, = 4, e = 0.67. Flow FA 
can be obtained from F;' by reflection on the y-axis. 

stages. The only difference between PA and PB is the shift of the overall phase by 
period, but the overall phase has a subtle effect on the symmetries of the flow. Other 
waveform effects are discussed in detail in $5.  

Symmetries of flows have been proved beneficial in many studies involving chaotic 
advection (Franjione, Leong & Ottino 1989; Franjione & Ottino 1992). Two flows 
FA( . )  and FB( .) are symmetric to each other if there exists a transformation S such that 

FB(.) = SF,S-l( .) .  (14) 

Tf FB(. ) = FA( .) the flow is said to have ordinary symmetry; if FB(-) = cl( - )  the flow 
possesses time-reversal symmetry. The transformation S can be as simple as reflection 
across the axes or rotation about the origin in a Cartesian frame. The reflectional 
symmetry across the x-axis is denoted by S,, i.e. ( x , y ) - f ( x ,  - y ) ;  similarly, S, denotes 
(x ,y)+(-x ,y) .  A 90" clockwise rotation is denoted by R which maps (x,y) into 
( - y ,  x) and R2,  a rotation by 180", corresponds to (x,y)-+( -x, -y).  It can be easily 
seen that S,S, = 1, S,S,  = 1, R4 = 1, and R2 = S,S, = S,Sz. The symmetry S is 
said to be orientation preserving if the determinant of the Jacobian is + 1  and 
orientation reversing if the determinant is - 1. The $xed line of the symmetry S is 
defined as a set of points {x} that is invariant upon transformation, i.e. S{x)  = {x). 
Thus, for example, S,{y-axis) = {y-axis). 

Consider the flows produced by the action of moving boundary A as FA(.) and 
boundary B as FB( -), e.g. in the VMF FA( .) and FB( - )  could be left and right-cylinder 
motions, or in the MCF they could be motions of the top and bottom walls. It is 
apparent that F,( a )  and FB( - )  need not be restricted to only single boundary motions. 
For instance if we choose to compose the flows in figures 3(a) and 3(c) to make a 
protocol, then FB(.) would have two boundaries in motion. The square-wave time- 
periodic flow in PA is produced by repeating the sequence F B t 4 ( . ) ;  PB, corresponds 
to F i  F B e 4 ( - ) .  The index f in flow F ; ( - )  means that the flow moves only half of its 
total displacement per period. 

Both the cavity flow and the vortex mixing flow are doubly symmetric, i.e. they 
exhibit two independent symmetries. Two symmetries S,  and S,  are said to be 
independent if S,  + SS, S-l for all S.  Figure 12 shows the streamline portraits of the 
component flows FA(- )  and Fig( .) of the VMF with a square-wave protocol consisting 
of one cylinder rotating, then its reflection. Each of the component flows has a 
reflectional symmetry across the x-axis (see table 1). In table 2, various symmetries of 
the time-periodic vortex mixing flows with PA and PB are presented. Similar relations 
can be easily derived for the cavity flows. The vortex mixing flow FBFA(.) with 
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Flow A,  FA Flow B, F, 

Flow system Self-symmetry Relation to F, Self-symmetry Relation to FA 

Cavity flow SUF.4' s?J S,  Ful S, s, F,' s, S, F i l s ,  
Vortex mixing flow S,  Fa' S, S ,  Fu1 S, S ,  Fi l  S,  S, 1;;' S ,  

TABLE 1. Symmetries of the component flows 

Protocol Sense of rotation Flow Symmetries 

PA Coro tating F, FA s, ; F, s, 
PA Counter-rotating F, FA R 2 ;  FBSz 

PB Corotating F $ F ~ F $  s,; ees, 
PB Counter-rotating F! F, F! s,; F$ ~i ~2 

TABLE 2. Symmetries of time-periodic vortex mixing flows in square-wave form, assuming equal 
rotation speeds for F, and F, 

corotating cylinder motion exhibits a symmetry along the y-axis and a cumed line of 
symmetry along Fg {x-axis), i.e. the x-axis advected by flow B through half of its 
displacement. As we will see in the next section, this curved line of symmetry, although 
not visually apparent in the Poincare sections, helps determine periodic points of the 
flow. A derivation of these symmetry relations is presented in the Appendix B. 

A final note concerns the relation between geometric symmetries and the flow 
symmetries. The VMF geometry has three symmetries, reflections across the x- and y- 
axis and 180" rotations. The protocols of composed flows in table 2 have one flow 
symmetry that coincides with a geometric symmetry and one that does not because the 
sense of rotation in general breaks the geometric symmetries. The fact that a flow 
symmetry coincides with a geometric symmetry is a result of the overall phases of PA 
and PB being respectively 0 and i, Other phases turn both flow symmetries into curves 
that do not coincide with any geometric symmetries. The lesson here is that if the phase 
is chosen poorly, then flow symmetries are hidden, and from a practical point of view 
they cannot be exploited to reduce computational workloads, as is done for many of 
the tools described in $4. 

4. Dynamical tools for use in mixing studies 
In this section we describe several methods to calculate the dynamical characteristics 

of the chaotic flows under investigation. The presentation and evaluation is from the 
viewpoint of their direct bearing on the needs of mixing studies and, particularly, on 
possible limitations when extended to complex flows. The tools are arranged roughly 
according to computational effort. 

4.1. Poincare' sections 
Poincart sections provide an asymptotic picture of the global behaviour of a flow. 
Poincart maps are constructed from integration of a few selected initial points for 
hundreds if not thousands of periods, marking the location of the points at the end of 
each period. Since only a few points are involved, the calculations are swift even with 
numerically computed velocity fields. After many periods the marks reveal the long- 
time structure of the flow: regular regions or islands are shown as nested solid or 
broken lines; chaotic or well-mixed regions are shown as jumbles of points (although 
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FIGURE 13. Poincari sections of the vortex mixing flow using corotating cylinder motion with 
protocol A; e = 0.67, R,/R,  = 4.0: (a) B = 360°, (b) B = 540°, (c) B = 720°, (d)  B = goo", (e) 
B = 1080". cf, B = 1440". 

close examination may always reveal small-scale structures throughout the chaotic 
jumble). 

Symmetries are clearly evident in the Poincare sections of figures 13-15. Figure 13 
uses PA with corotating cylinders; this protocol has S, symmetry (table 2). Figure 14 
uses PA with counter-rotating cylinders; this protocol has R2 symmetry. In fact, in 
computing the Poincari sections the symmetry relations are exploited to reduce the 
computation workload, e.g. in figure 13 initial conditions are placed only on the left 
half-plane and advected ; the mappings from initial conditions on the right half-plane 
are then obtained by reflection across the y-axis. 
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FIGURE 14. Poincare sections of the vortex mixing flow using counter-rotating cylinder motion with 
protocol A; e = 0.67, RJR,  = 4.0: (a) 0 = 360", (b)  0 = 540", (c) 0 = 720", ( d )  0 = goo", (e) 0 = 1080", 
#') 0 = 1440". 

Poincari sections also provide a simple way to visually obtain a rough estimate of 
mixing characteristics and how they change with different protocols and parameter 
values. For instance, at lower values of 0 the Poincark sections in figure 13 show the 
appearance of two islands which do not move for any time t and are therefore defined 
as period-zero (P-0) islands. However, the size of these islands decreases with 
increasing tl and the islands cease to appear at all beyond a value of 8 = 1182" as the 
elliptic points contained in the islands turn into hyperbolic points. The Poincark 
sections of figure 14 show the opposite behaviour. The largest mixing zone develops at 
a value of 8 as low as 540" and higher-period islands appear around the inner cylinders 
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FIGURE 15. Poincare sections and experimental dye advection patterns for the cavity flow using 
corotating top and bottom wall motion with protocol A;  A = 0.75, r = - 1 ,  H = 10.16 cm, W = 7.62 
cm. PoincarC sections: (a)  D = 4.62, ( b )  D = 6.93, (c) D = 9.24. Experimental dye advection pattern 
after 6 periods: (d) D = 4.62, (e )  D = 6.93, cf) D = 9.24. 

with further increase in 8. At 8 = 540", period-1 islands appear around each inner 
cylinder which bifurcate into higher-order chains at higher values of 8. The extent of 
the mixing region for the counter-rotating flows thus decreases at higher 8. Figure 15 
shows Poincare sections for cavity flows. The computations are done using a finite 
difference velocity field on a 49 x 81 grid with bicubic splines for interpolation. With 
PA this flow has an S, symmetry which is exploited in figure 15 (a-c). Two P-1 islands 
present at D = 4.62 disappear at D = 6.93 but appear again at D = 9.24. If D is 
increased further the P-1 islands disappear and reappear at even higher values of D ;  
the sequence repeats itself. Experimental counterparts to figures 13, 14 and 15(a-c) are 
figures 15(d-f), 16 and 17; comparisons are discussed further in 44.2. 

PoincarC sections are very easy to calculate especially in the presence of symmetries 
and give the asymptotic mixing structures of the flow, but one must be careful in trying 
to extrapolate from long-time results to anticipate the results of short-time dye 
advection experiments (such as those shown in figures 15d-f, 16, 17). When Poincare 
sections show regular regions, dye advection experiments will typically show even 
larger islands in those regions as well. However, even if the PoincarC sections do not 
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exhibit any regular regions, we may not conclude that the flow mixes globally, because 
particle paths may appear regular for many periods, taking on the 'look' of chaotic 
motion only after hundreds or even thousands of periods of motion. It is important to 
stress that the Poincark sections do not yield information about the rate of mixing. 

4.2. Dye advection experiments 
Dye advection is not exactly a dynamical tool; however, advection experiments or 
simulations of advection experiments are the only methods available for determination 
of short-time mixing patterns and rates. In this section we illustrate the difference 
between the development of mixing patterns after a few periods (not more than 10) and 
the asymptotic mixing expected from Poincare sections. We also compare numerical 
dye advection calculations with experiments. Results show close agreement between 
BJEM computations and experiments. 

Figures 15(&f), 16 and 17 show experimental blob deformation patterns for the 
multicell cavity flow and the vortex mixing flow. Other eccentricities in the VMF are 
considered for the optimization test problem in $7. In figure 16, as expected from the 
PoincarC sections of figure 13, at lower values of 6 the mixing is confined near the 
unperturbed homoclinic orbit of figure 9(a). As 0 increases, the dye spreads out more 
towards the outer cylinder. A pair of P-0 islands are present up to 8 x 1182". At 
B = 1440", most of the flow region is covered by the dye in 8 periods of the flow except 
for some tiny unfilled regions scattered in the flow and a small neighbourhood of two 
parabolic points on the outer cylinder. However, the experiment cannot be carried out 
for long enough to check if those tiny unfilled regions would be covered by the dye; 
the striations thin out rapidly in most of the flow region, especially near the inner 
cylinders and molecular diffusion blurs the picture. The counter-rotating protocol in 
the VMF produces a poorer mixing flow than the corotating protocol. In figure 17 the 
area covered by the dye in this case reaches an asymptotic value at 6' = 540" and at 
higher values of 0 the area coverage decreases because of the appearance of higher- 
order islands near the inner cylinders. In figure 15(&f) we show the dye advection 
pattern in the slender cavity flow. As the wall displacement per period increases, the 
area coverage in figure 15 increases dramatically from D = 4.62 to D = 6.93 and then 
decreases at D = 9.24 with the appearance of islands, once again in agreement with the 
PoincarC sections. 

The results in figure 15 suggest the existence of mixing windows in the D-space of the 
cavity flows. Ling & Schmidt (1992) have considered this idea in an A > 1 cavity flow 
and assumed that a flow mixes well if P-1 islands do not exist as visualized in Poincari 
sections. They showed specifically that, for a cavity flow with a fixed geometry and 
fixed wall velocity, mixing windows appears in bands in the displacement parameter, 
as evident in the Poincart sections and dye advection experiment in figure 15. Consider 
these ideas in the context of our example. The islands formed in the vortex mixing flow 
by P-0 elliptic points disappear at higher values of 8. If there exists a critical value of 
6' beyond which there are no P-0 or P-1 islands in the flow and the mixing is global, the 
critical value of 19 defines a mixing window. For the corotating vortex mixing flow with 
protocol A (figures 13 and 16), no higher-order (> 1) islands are found in the Poincart 
sections and period-0 islands cease to appear at all beyond a critical value of 8 x 1182" 
where the elliptic points of the islands turn into hyperbolic points. Any B above 1182" 
produces global mixing in the vortex mixing flow with RJR, = 4, e = 0.67, corotating 
cylinder motion, and square waveform. Let us now consider the limitations of this 
approach. One limitation of such an analysis is that it is based on Poincari sections of 
the flow. Poincare sections describe only the asymptotic mixing structure of the flow 
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(b)  

FIGURE 16. Experimental dye advection patterns for the vortex mixing flow using corotating cylinder 
motion with protocol A; e = 0.67, RJR,  = 4.0: (a) 0 = 360" after 15 periods, (b) 0 = 540" after 18 
periods, (c) I9 = 720" after 16 periods, (d) I9 = 900" after 12 periods, (e)  0 = 1080" after 10 periods, 
0") 0 = 1440" after 8 periods. 

and do not yield any information about the rate at which this structure is achieved. The 
Poincare section for a parameter set in the mixing window may not show any island, 
but the dye advection pattern in experiments which are carried out only for a low 
number of periods may contain several regions not filled with the dye and appearing 
as islands. Another limitation is that a flow might have higher-order elliptic periodic 
points leading to poor mixing, or the flow might still contain P-1 elliptic points but the 
islands be so small as to be inconsequential. Conversely, the flow might contain no P-1 
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FIGURE 17. Experimental dye advection patterns for the vortex mixing flow using counter-rotating 
cylinder motion with protocol A; e = 0.67, R,/Rt = 4.0: (a) B = 360" after 24 periods, (h)  0 = 540" 
after 16 periods, (c)  B = 720" after 15 periods, (d )  B = 1080" after 14 periods. 

or P-3 elliptic points but the islands associated with P-3 or higher-order points might 
still be large. A good example of this behaviour appears in Leong & Ottino (1989b). 

In figure 18 (Plate 1) a numerical simulation of blob deformation is compared with 
experiment. The initial blob is mimicked by a disk of 4000 points placed approximately 
at the location of the initial blob in the experiment. Each of these points is then 
advected using protocol A. To obtain the deformed blob after two periods in figure 
18(b) the locations of 4000 points are plotted. At higher periods adjacent points 
separate and it becomes difficult to resolve the shape of the deformed blob. One remedy 
for this problem is to start with a larger number of points, but with exponential 
stretching pulling the points apart this method is very expensive. A computationally 
more attractive method is suggested by an experimental observation : in dye advection 
experiments the advection template developed in early periods from the action of the 
invariant unstable manifolds survives with time; the action of later periods is to add 
finer and finer levels of detail (Leong & Ottino 1989a, Swanson & Ottino 1990). In this 
method the locations of 4000 points are plotted starting from, say, the second period. 
For example, in figure 18 the locations of 4000 points after period-2, -3, -4, and -5 are 
plotted to get the deformed blob after 5 periods. In this way the computation time can 
be significantly reduced and sufficient resolution achieved by advecting a smaller 
number of points. While this method is strictly no longer a blob deformation 
simulation, it remains true to the goal of finding the blob deformation pattern. Figure 
18 shows that all major folds in the experimental pictures can be numerically simulated. 
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Of course, one finds some differences in the fine scales ; even with an analytical solution 
a perfect match of all striations and folds cannot be achieved because of truncation 
errors. Agreement at the finest scales can be improved by using a large number of 
boundary elements or by using curved boundary elements and/or interpolated 
boundary velocities and point source strengths. These numerical refinements will be 
addressed elsewhere (Jana et al. 1993). 

4.3. Periodic points, manifolds, und stretching 

Periodic points and their associated manifolds are the fundamental components of 
chaotic mixing patterns. It has been well demonstrated that elliptic points are at the 
centre of non-mixing regions called islands (although not all poorly mixing regions are 
islands), and that hyperbolic points are centres of stretching and folding in the flows. 
Less well demonstrated is that the mixing near parabolic points depends on whether 
the point, which occurs on surfaces in pairs, is a separation or reattachment point. The 
mixing is never good at separation points; the flow is always away from the surface and 
unstable manifolds cannot pile up. Unstable manifolds at reattachment points can pile 
up and the mixing can be vigorous (Camassa & Wiggins 1991). In this section we 
discuss methods to locate periodic points, particularly by exploiting symmetries, and 
show how manifold structures dictate the advection pattern. But beyond knowledge of 
the locations of periodic points, it is also important to discover the orbits of the 
periodic points and how that leads to interaction between the points and their 
manifolds. Finally we address the question of how indicative the local properties in the 
vicinity of the periodic points are of the global properties along the point's associated 
manifold. 

Periodic points are at least as, if not more, important than critical points in 
determining mixing patterns. Figure 19 shows the orbits of period-1, period-2, and 
period-3 hyperbolic points of the VMF for 8 = 1440" with PA. It is important to 
determine the motion of periodic points as they provide a template for the organized 
aspects of the flow. The most general way to locate period-n points in a flow is to 
integrate a candidate point for n-periods and see if it returns to its initial location. 
Things are much simpler if the flow has symmetries. For doubly symmetric systems 
periodic points can be located by exploiting both the symmetries. For instance, with a 
reflectional symmetry, all odd-order chains of periodic points, n > 1, must have one 
point on the symmetry axis, and all even-order chains of periodic points must have an 
equal number of points on either side of the symmetry axis. Period-1 points, on the 
other hand, stay either on the symmetry axis or appear in pairs about the symmetry 
axis. A general procedure for finding period- 1 points is to find the conjugate curves of 
the flow symmetries. There are three steps to finding periodic points with this method. 
We refer to figure 20 and as an example find period-1 points on the conjugate curves 
in the VMF for B = 1440", PA, and corotating cylinder motion. First, advect the line 
of geometric symmetry, which is the x-axis in this case (see figure 12). In figure 20(b) 
the x-axis is transformed into the curved line of symmetry after rotating the right inner 
cylinder through a rotation of 720" (i.e. FL {x-axis}, see table 2 and Appendix B). Next, 
in figure 20(c) this curve is reflected across the other symmetry axis (in this case the y- 
axis, see table 2) to make a second curve and together these curves constitute the 
conjugate curves of the flow. Finally, the intersection points of these curves locate the 
period-1 points. A check on the orbits of these points, which are found to be circular 
arcs about the inner cylinders, reveals that they indeed come back to their original 
location at the end of a period. These orbits are not shown in figure 19. A second set 
of period-1 points lies on the axis of symmetry as shown in figure 19. A linearization 
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FIGURE 18. Comparison of numerical experiments on blob deformation (right) with experimental dye 
advection patterns (left) for the vortex mixing flow using corotating cylinder motion with protocol A; 
e=0.67, R ,  lR,=4.0, 0=1440"; P i s  the elapsed number of periods. 
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FIGURE 29. Experimental dye advection pattern for the vortex mixing flow. Corotating motion with 
protocol A; e=0.67, R, lRi=4, 8 = 1 W  after 10 periods: (a )  sawtooth wave with c=l ,  (b)  sine wave, (c)  
square wave. In (b )  and (c )  the patterns on the left represent results with c from average deviation and on 
the right with from the lead term of the Fourier series. 
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FIGURE 19. Orbits of the periodic point after three periods for the vortex mixing flows; e = 0.67, 
R,/R, = 4, @ = 1440°, corotating cylinder motion. Solid lines are for P-1 points, dashed lines are for 
chains of P-2 points, and dotted lines are for chains of P-3 points. Some of the orbits of the points 
appear to overlap but the points never occupy the same orbit at the same time. 

FIGURE 20. Conjugate curves and the location of P-1 points at the intersection of the conjugate curves 
for the vortex mixing flow; RJR, = 4, e = 0.67,B = 1440°, corotating cylinder motion: (a) initial line 
on the x-axis, (b) the curved line of symmetry obtained by advecting the initial line by rotating the 
right inner cylinder through 720°, (cj mirror image of the curved line of symmetry on the y-axis, (d )  
conjugate curves. Periodic points are denoted by asterisks. 

8 FLM 269 
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FIGURE 21. Unstable manifolds of P-l points (denoted by *) up to 3 periods for the vortex mixing 
flow using protocol A for 0 = 1440", e = 0.67, corotating cylinders, and R J R ,  = 4. 

of the flow around a periodic point determines the character of the point, hyperbolic 
or elliptic. The P-1 points found in figure 20 on the conjugate curves turned out to be 
all hyperbolic. This explains why fluid elements in the neighbourhood of the inner 
cylinders experience large stretching and why striations thin out rapidly in those 
regions. 

To quantify stretching, define an infinitesimal material vector dX, initially located at 
a point Xi with an orientation Mi that stretches and deforms with the flow. Its length 
stretch h is given by 

where DF(X,.) is the Jacobian matrix of the mapping F evaluated at Xi.  As the vector 
dX, deforms its orientation changes and after one period of the flow is given by 

h = p F ( X i ) - M J ,  (15) 

Mi+, = DF(X,). MJh,  (16) 

where X,+l = F(XJ is the new location of the point. The stretching field of the flow 
h(x , t )  is obtained by averaging several vectors over all orientations. The eigen- 
values of the hyperbolic periodic points determine the local rate of stretching and 
the eigenvectors determine the local directions of stretching and contraction. In the 
case of hgher-order hyperbolic periodic points the eigenvalues of all the points in the 
chain are the same. Thus, the local rate of stretching at a periodic point is a property 
of the chain. 

The manifold structures of hyperbolic periodic points are responsible for the 
advection pattern of material elements and are central to the understanding of the 
dynamics of fluid mixing. In what follows we use the algorithm described by Hobson 
(1993) to calculate the stable and unstable manifolds. 

In almost all cases only a few or one of the lower-order hyperbolic periodic points 
contribute to the creation of the mixing template; the other hyperbolic points add the 
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FIGURE 22. Unstable manifolds of P-1, P-2, and P-3 points up to 6 periods for the vortex mixing flow 
using protocol A for 0 = 1440°, e = 0.67, corotating cylinders, and RJR,  = 4. Solid lines are for P- 
1 points, dashed lines for P-2, and dotted lines for P-3 points. For clarity the manifold of the central 
P-1 point of figure 21 is not shown. 

fine structure. Therefore, the extent of the main unstable manifold determines if the 
flow globally mixes. Because of the highly ramified nature of the tangled manifold, the 
length is infinite, but this infinite length is packed into a subdomain of the entire flow 
domain. Good mixing flows have their mixing template extended throughout the flow 
domain. It has been common wisdom in mixing studies that only the lower-order 
periodic points govern the dynamics of mixing and transport, but in complex flows the 
question is to decide which of the periodic points’ manifolds are most important. While 
it is the usual case for the manifolds of some period-1 point to be the most important 
to the mixing character of the flow, it is not true that all period-1 points are more 
important than all higher-order periodic points. Consider the VMF as an example. 
Figure 21 shows the calculated unstable manifolds of the period-1 hyperbolic points of 
figure 19 after three periods. The central period-1 point controls the template of mixing 
for this case because its manifold develops quickly. This is a result of the relatively 
larger stretching along this manifold. Tn figure 22 the manifold structure of the central 
period-1 point from figure 21 is not drawn so that the effects of the other two period- 
1 points, two period-2 points, and all period-3 points of figure 19 may be more easily 
seen and compared. The extent of the period-3 manifolds is much larger than the two 
period-1 points and all period-2 points. Figure 23 shows another example where the 
stretching along the unstable manifold of a P-2 point calculated up to 6 periods is 
almost a factor of two larger than that along the largest stretching of the P-1 point. 
This exemplifies a case where the lowest-order periodic points do not entirely govern 
the dynamics. 

It is also found that the stretching along manifolds bears little correspondence to the 
eigenvalues of the periodic points even after one period of the flow. Figure 24 shows 
the unstable manifolds of three P-3 points of the same chain along with their orbit for 

8-2 
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FIGURE 23. Comparison of unstable manifolds of (a) a P- 1 point and (h) a P-2 point after 6 periods 
in the vortex mixing flow using protocol A for 0 = 1440", e = 0.80, corotating cylinders, and 
RJR< = 4. Stretching along the manifold of the P-2 point is almost a factor of two more than the 
P-1 point. 

FIGURE 24. Unstable manifolds of a P-3 chain with the three P-3 points labelled 1, 2, and 3 after 6 
periods in the vortex mixing flow using protocol A, 0 = 1440°, e = 0.80, corotating cylinders, and 
RJR,  = 4 ;  (a) orbit of P-3 point, (b-d) manifolds of points 1-3 respectively. The cumulative 
stretching along manifolds is presented in table 3 .  
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Period Point 1 Point 2 Point 3 

3 300 630 640 
6 18000 9500 28 500 

TABLE 3. Comparison of stretching along manifolds of three P-3 points of the same chain shown 
in figure 24; 0 = 1440°, e = 0.8, PA, RJR, = 4, corotating cylinder motion 

the vortex mixing flow. Although these periodic points have equal eigenvalues, the 
stretching values along the unstable manifolds are different as shown in table 3. Also, 
the trend found after 3 periods does not hold after 6 periods as the portions of the 
manifolds traverse different environments once they emerge from the vicinity of the 
periodic points. This shows that the stretching characteristics of all periodic points of 
a higher-order chain cannot be obtained by studying only one periodic point of the 
chain. These issues must be taken into account when making comparisons regarding 
the mixing characteristics of flows. It is wise to compare the stretching values along the 
unstable manifolds rather than comparing just the eigenvalues of the periodic points. 
The unstable manifolds must be calculated for a reasonable number of periods to allow 
for interaction with other periodic points. 

Although the manifold structures and stretching along manifolds produce a clear 
picture about the role of various periodic points in dictating the dynamics of mixing, 
information about the global mixing characteristics is difficult to extract from them. 
The global mixing pattern is a result of the cumulative action of the manifolds of 
numerous hyperbolic periodic points of various orders and it is computationally 
taxing to study each of them separately and include them in the analysis. An alternative 
tool specifically suited to this purpose is the calculation of stretching values for a large 
number of points uniformly distributed in the flow and to study their distribution. The 
distribution of stretching values within a flow shows remarkable agreement with dye 
advection structures. Moreover, the probability density function of stretching provides 
quantitative information regarding the quality of mixing in the flow. Calculation of 
stretching of material elements in chaotic flows is computationally expensive and 
difficult if the velocity field is numerically evaluated. In spite of such difficulties, 
stretching plots and distributions of stretching values (DSV) have become useful tools 
in quantifying mixing in chaotic flows. Muzzio, Swanson & Ottino (1991) showed that 
in chaotic flows the DSV follows a log-normal distribution and the shape of rescaled 
distribution curves are time invariant after a few periods of the flow. In 97 we use the 
DSV to compare the mixing structures produced at various eccentricities in the VMF. 

4.4. The Melnikov method 
The Melnikov method provides one of the few analytical tools for the analysis of 
chaotic flows. In steady flows stable and unstable manifolds coincide leading to the 
regular closed orbits that are the hallmark of steady flows. When perturbed, the stable 
and unstable manifolds separate but still intersect at a set of homoclinic or heteroclinic 
points. The manifolds between intersections loop away from the unperturbed orbit to 
form lobes. These lobes play a central role in the mixing and transport of dynamical 
systems. 

A form of the equations of motion suitable for use with Melnikov’s method is 

dx 
- d t  =Ax) + &, 4, t E (0, T ) ,  
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where f, = a@o/8xz, f, = -Qho/axl, g ,  = c?@l/ax,, g,  = -8@,/ax,, E is a perturbation, 
and @(xl, xz, t) = eo(x1, x,) + E @ ~ ( x ~ ,  x,, t )  is the streamfunction of the perturbed flow. 

The Melnikov method (Guckenheimer & Holmes 1983; Wiggins 1988) checks the 
transverse intersection between the stable and unstable manifolds of a hyperbolic point 
to find the distance between the perturbed manifold and its previous location on the 
unperturbed homoclinic orbit. The distance d(tO) is given in terms of the Melnikov 
function M(t,) as 

M(to) = rm ' d % ' o ' ( f -  to)] A g[q"'(t- tU), t1> dt ,  (18b) 
--oc 

wherefand g are derived from the flow through (17) and ' A ' is the wedge product 
f A g = f, g, - f, g, ; q ( O )  is the unperturbed homoclinic orbit, E is the perturbation 
parameter, and to is the time when the distance d((to) is being calculated. The Melnikov 
method can be used to detect the presence of chaos: one intersection implies infinitely 
many and infinitely many intersections implies a homoclinic tangle and hence chaos. 
It should nevertheless be remarked that in most mixing problems the existence of chaos 
is usually not at issue - it is rather easy to predict which flows will give rise to chaos 
and which ones will not. Rather, the utility of Melnikov's method is to characterize and 
quantify the effects of chaos on mixing and transport. 

Consider now the application of the method, especially in the context of numerically 
calculated velocity fields. The streamfunction of the perturbed flow is a linear 
combination of the streamfunction of the flows produced by each moving element, for 
example, the left and right inner cylinders in the vortex mixing flow: 

@(XI, x2,4 = U(l+ cf l t ) )  @A(-% x,) + w - EY70) @H(x1, . -2>.  (19) 

The streamfunctions 1CIA(x1, xz) and @Pe(xl, x,) correspond to the flows produced by 
moving the elements A and B respectively at unit velocity. After simplification, (19) can 
be written as 

$w,, X2I 0 = $O(Xl? x2) + @l(x1, x,, 0, (20) 

where @o(% = U($A(xl, xz> + @B(Xl, %))> (21 a> 

The Melnikov method gives the number of transverse intersections between the 
stable and unstable manifolds per period, i.e. the zeros of M(t,) as well as the lobe area, 
valuable information which could otherwise be gathered only by examination of 
numerous specific computations. The lobe area ,u is defined as the area formed by the 
segments of the stable and unstable manifolds between two consecutive intersections 
at r1 and T, and is given as 

(Rom-Kedar, Leonard & Wiggins 1990; Wiggins 1992). Lobe area is a measure of the 
degree of chaos - a zero lobe area means no chaotic motion. Using (1 7), (1 8), and (20), 
M ( t J  can be written as 
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FIGURE 25. Unperturbed homoclinic and heteroclinic orbits for the vortex mixing flow; R J R ,  = 4, 
e = 0.67, and Y = 1. The points p and q are the starting points for the evaluation of the Melnikov 
integral. 

where uiK, i = 1,2, is the ith component of the velocity at a point on the unperturbed 
homoclinic orbit produced by the moving element K(K = A ,  B).  It can be easily proved 
with the aid of (23) that streamline crossing is a necessary and sufficient condition for 
chaos in bounded two-dimensional fluid flow (i.e. u,(P, tl) += ku,(P, t z ) ,  for some 
point P). 

In order for the Melnikov method to be used, the homoclinic orbit must be known 
accurately. A closed-form analytical expression for M(t,)  can be obtained if u , ~ , ~  are 
given analytically in terms of t. However, for complex flows the homoclinic orbit is 
almost never known analytically and (23) must be evaluated by integrating 
simultaneously with following a point on the homoclinic orbit. In the vortex mixing 
flow to obtain the homoclinic and heteroclinic orbits accurately, we use respectively 
200 and 50 boundary segments distributed symmetrically on the outer cylinder and 
each of the inner cylinders. Figure 25 shows the double homoclinic orbits of the 
hyperbolic point and the heteroclinic orbits of the parabolic points. To test that the 
homoclinic orbit is accurately obtained, we advect a point starting at the hyperbolic 
point for one traversal of the homoclinic loop. If the point returns tolerably close 
(within 10-l' say) to its starting location, then the velocity is accurate enough. If the 
velocity field is not accurate enough, the point would never return to the close 
proximity of the hyperbolic point and an acceptable homoclinic loop cannot be 
obtained. For example such a difficulty may arise when the velocity is evaluated by 
interpolation from the nodal values in finite difference or finite element methods. 

To accommodate various waveforms in the analysis, f ( t  + to) in (23) is expanded in 
a Fourier series: 

where C, is the ith Fourier coefficient. The Melnikov integral can then be expressed as 

where 
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i N, 

3 3.733~10-4 
1 1.761 x 

5 1.768 x 
7 9 . 8 5 0 ~  
9 7 . 7 0 0 ~  

11 6.310 x 
13 5.270 x 
15 4.540 x 
17 4.060 x lo-' 
19 3.650 x 

TABLE 4. Values of N, along the right homoclinic loop of figure 25; RJR, = 4, e = 0.67, 6 = 540", 
sine waveform and corotating cylinder motion 

and 
. 2nit +m 

(ulB uZA - uIA u2J sin ~ dt. 
T 

The integrals Mi can be shown to vanish by starting the integration from the symmetric 
pointsp and q on the unperturbed homo- and heteroclinic orbits, as shown in figure 
25. The integrals Ni always converge as a point on the homoclinic loop approaches the 
hyperbolic point. Similar arguments hold for the heteroclinic connections of figure 25. 
The zeros of M(t,) are given by the zeros of sin ( 2 n i t o / T )  which are at to = T/2 and T. 
So the stable and unstable manifolds intersect each other twice in a period, forming two 
lobes. Evaluating (22) the lobe area is 

In $ 5  we use sine waves, square waves, and sawtooth waves for.f(t). Note that Ci = 0 
for i even for the square and sawtooth waves and that (28) has only one term for a sine 
wave. Therefore we need only calculate the integrals for i odd. The first ten non-zero 
values of Ni are tabulated in table 4 for the flow of figure 25. Nl is almost two orders 
of magnitude larger than the subsequent terms. In $95 and 7 we use lobe area to 
compare the effect of different waveforms and eccentricities on mixing. 

A limitation of the standard version of the Melnikov method is its formal restriction 
to small perturbations. In this version of the Melnikov method a perturbation is 
regarded as valid and 'small' as long as d(to) in (18) is single valued. If the manifold 
structures become convoluted above some value of 6, the distance between the 
manifolds and the unperturbed homoclinic orbit becomes multiple valued, as shown in 
figure 26 for the VMF. When this happens the Melnikov method ceases to apply. It 
should also be noted that Kaper & Wiggins (1993) have recently developed extensions 
to the standard Melnikov method for use with O(1) perturbations. The value of 6 

beyond which the standard Melnikov method fails depends on the specific problem at 
hand. In the VMF using a sine waveform for the boundary motion, the Melnikov 
method is found to be valid for e < 0.1. Another drawback of the method is that the 
unperturbed system must possess a heteroclinic or homoclinic orbit. All the flows 
studied in this work exhibit at least one heteroclinic orbit or a pair of homoclinic orbits 
and the Melnikov method applies to all of them. However, for the A = 1.67 cavity flow 
and corotating wall motion- the most studied case to date and by no means an 
atypical situation - the unperturbed flow does not have homoclinic or heteroclinic 
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FIGURE 26. The Melnikov method breaks down for larger perturbations when the distance of the 
unstable manifold from the unperturbed homoclinic orbit becomes multivalued. The perturbed 
unstable manifold (solid line) corresponding to the right unperturbed homoclinic loop (dashed line) 
of figure 25 is shown. The sine waveform, e = 0.25, 0 = 540”, e = 0.67, R,/R,  = 4.0, and corotating 
cylinder motion is used. 

connections (Chien et al. 1986; Leong & Ottino 1989~). This drawback, however, 
can be circumvented by using a special form of the Melnikov method called the 
subharmonic Melnikov method (Guckenheimer & Holmes 1983) which has been used 
on the corotating journal bearing flow by Swanson (1991). 

5.  Effect of waveforms 
How sensitive are mixing structures to the details of the forcing? We have seen how 

the total displacement, being proportional to the energy flux through a system, 
markedly changes mixing structures, destroying or creating islands, moving and 
changing the size and number of large folds, for instance. But given a fixed 
displacement, what are the effects of changing the forcing’s overall phase and 
waveform, or the relative phase of the boundary motions, or the period of the motions? 
We have already seen in 43.3 how changes in the overall phase hide or expose 
symmetries. It may seem surprising that a time period could have any effect in a Stokes 
flow; the question requires a more detailed answer and is addressed in $6. To our 
knowledge no one has investigated the effects of systematic changes to the relative 
phase of boundary motions; motions are always fixed at n out of phase. In this section 
we focus on the effects of different forcing waveforms on mixing structures. To date 
several waveforms are commonly used to generate out-of-phase boundary motions : 
sine waves, square waves, and sawtooth waves. The main result of this section is that 
neither short-time advection patterns, nor asymptotic Poincart sections depend on the 
specifics of the boundary motion. 

The simplest qualitative argument suggesting this ‘universality’ of waveform is to 
consider the symmetrized version of (11) for the form of the boundary motions 

u* = U(1+ cflt)), U B  = U(1 -€At)), (29a, b) 

with the waveformf(t) taken to be an undulatory function. If we expandfin a Fourier 
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FIGURE 27. Common waveforms used to drive chaotic advection patterns: (a) sawtooth wave. 
(b)  sine wave and (c) square wave. 

series and if that series decays rapidly enough that the shape off  is substantially 
captured by the lead term of the series, then we should be able to truncate the series 
at the first term and by adjusting the lead coefficient, which becomes a rescaled 6 ,  tune 
all waveforms to give the same forcing effects. Swanson (1991) presented a 
computational study on the effects of different waveforms on chaotic advection in an 
eccentric cylinder flow. He showed that qualitatively similar Poincart sections can be 
found for all waveforms by the adjustment of the perturbation parameter. Three 
methods were used in that study to calculate the perturbation parameter: (i) equal 
average deviation from the mean velocity, (ii) identical lead term in the Fourier series, 
and (iii) equal distance between the stable and unstable manifolds calculated using the 
Melnikov method. In this study we use the same methodology to calculate the 
perturbation parameters and compare the performance of the sine wave, square wave, 
and sawtooth wave in terms of Poincart section and experimental dye advection for the 
VMF. Equations (30)-(32) show formulae for the three waveforms and figure 27 shows 
representative sketches of each. In (30)-(32) since U is always positive we are showing 
results for corotating protocols ; similar results hold for counter-rotating protocols. 

Sawtooth wave : 

U[1-€(4t/T- l ) ] ;  0 < t < T/2, u[1+ ~ ( 4 t / T -  l)] ; 0 d t d T/2, 
6(4l/T- 3)] ; T/2 < t < T, " = { u[1 -e(4t/T-3)]; T /2  < t d T. 

(30) 
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Average deviation Lead term Fourier 

FIGURE 28. PoincarC sections calculated using different waveforms. Corotating cylinder motion with 
protocol A, e = 0.61, XJR, = 4, and 0 = 540": (u) sawtooth wave with E = 1 ,  (b) sine wave, (c) square 
wave. In (b) and (c) the section on the left represents results with E determined from average deviation 
and on the right with F determined from the lead term of the Fourier series. 

Method 
Sawtooth wave 

(reference value) Sine wave Square wave 

Average deviation from mean velocity 1 .o 71/4 0.5 
Lead term in Fourier series 1 .o 8/712 2/71 
Lobe area from the Melnikov method 1 .o 8/71' 2/n 

TABLE 5. Values of perturbation parameter e from different methods 
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u1 = . q l  +tcos(271t/T)], u, = U[l-€COS(271t/T)]. ( 3  1) 

Square wave : 

(32) 
0 q t q T/2, U[l-e]; 0 < t d T/2,  

u1 = r1 u[l-t]; +cl; T/2 < t < T,  u2 = {VlCe]:  T / 2  < t d T. 

If both inner cylinders in the VMF rotate at the mean speed U, the fluid particles 
follow regular orbits and there is no chaotic motion. The degree of chaotic motion is 
determined by the extent to which each cylinder rotates away from the mean speed U 
and is out-of-phase with the other. We use three ways to establish a match in the effect 
of waveforms. In the first method the shaded area under the curve in figure 27, which 
is a measure of the deviation from the mean velocity U, is made equal for each 
waveform by adjusting the respective e values. The second method is based on the 
truncated Fourier series of the functionsflt). The general form of the lead term in the 
Fourier series is f l t )  z Ccos (2nt/ T ) ,  where C is a function of e and depends on the 
specific waveform. The waveforms are then matched by adjusting the values of e such 
that all of them have the same value of C. The third method uses the Melnikov method 
to calculate lobe areas ($4.4). The area of a lobe is a measure of the degree of chaos ~ a 
zero lobe area means no chaos - and the c for different waveforms are adjusted to 
produce equal lobe areas. Although this last method is best for equalizing dynamical 
effects as it is based on the dynamics of the hyperbolic periodic points of the flow, it 
is difficult to implement except at low perturbation from integrability. In table 5 we 
present the values of e calculated from the three methods. We set e = 1 for the sawtooth 
wave and calculate the relative e values for the other waveforms. 

Figure 28 shows a comparison of PoincarC sections. Identical initial conditions were 
used in all the computations. (Since the Melnikov method uses a Fourier series to 
calculate lobe area [28], it happens that the adjustments to c from the Melnikov and 
lead-term Fourier series methods are identical. Therefore, we omit showing separate 
results in figures 28 and 29.) A lower value of 8 is chosen in this case to show the 
presence of both chaotic and regular regions for a better comparison. Except for minor 
variations in the chaotic region the agreement is excellent. Figure 29 (plate 2) shows a 
comparison of the experimental advection patterns. In this case a higher value of B is 
chosen so that large-scale structures develop in only a few periods. The agreement 
between the sine wave and the sawtooth wave is quite satisfactory and the square wave 
produces a qualitatively similar picture. However, the dye area coverage for the square 
wave is larger than the other waveforms. An explanation for this is that the 
contribution of the higher-order harmonics in the Fourier series is appreciable for the 
square waveform. The coefficients of the higher-order harmonics for the sine wave are 
zero and for the sawtooth wave they are an order-of-magnitude less than the leading 
term. This explains the close matching between the sine and sawtooth waveforms. 
However, the second term of the square waveform is only a factor of 2 less than the 
first term, and for a system with such a large perturbation (e = O(1)) produces a 
somewhat larger effect. The conclusion is that any choice, for an experiment or 
computation, of a (nearly) single-frequency forcing function produces the same 
qualitative results. 
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Potential mixing zone u 
FIGURE 30. Potential mixing zone for the vortex mixing flow; R,j’R, = 3, e = 0.6 

denotes r = 115 and solid lines denote r = 5.0. 

6. Slow mixing 

Dashed line 

Very slow variations of a control parameter can dramatically localize mixing 
patterns. Kaper & Wiggins ( I  993) have extended the technique of adiabatic invariance 
to calculate these effects for an eccentric cylinder flow when the speed ratio of the 
cylinders oscillates very slowly. They find that mixing is confined to smeared out bands 
centred on homoclinic orbits called ‘potential mixing zones’; they also find, as the 
period of variation shortens, an abrupt transition from adiabatic to non-adiabatic 
behaviour. In this section we experimentally verify the existence of potential mixing 
zones in the VMF under slow variation of the speed ratio of the inner cylinders r.  We 
also investigate the crossover from adiabatic to non-adiabatic forcing and the breakout 
from potential mixing zones. Because its effect is to localize well-mixed regions, it is 
apparent that adiabatic mixing will not be important to industrial-scale mixing 
problems; however, in natural systems, e.g. the atmosphere or the oceans, where 
forcing variations may take place on timescales of seasons or years, this mixing 
mechanism may be of considerable relevance. 

Why should speed matter in Stokes flows? The answer is that adiabatic changes are 
not merely slow but are quasi-static. An example will make this clearer. Consider the 
VMF with corotating cylinders in figure 30. The steady flow produces a double 
homoclinic loop. When r > 1, the central hyperbolic point h moves on the x-axis right 
of centre and the homoclinic orbits are the solid lines in figure 30. When r < 1, h moves 
left of centre and the homoclinic orbits are the dashed lines. If r oscillates about 1 as 

(33) r = [l +esin(2~t/T)]/[l -~.s in(2~t /T)J ,  

the orbits oscillate between the solid and dashed lines in figure 30. An adiabatic change 
in r is then one in which the oscillation period T is large and remains nearly constant 
as fluid particles make circuits around the loops and experience effectively no change 
in the instantaneous streamline patterns. However, the instantaneous streamlines do 
change slowly and fluid particles veer away from their initial paths at very small angles. 
The separation of the manifolds is very small, and the experimentally observed lobes 
generated by this quasi-static time-dependence are very thin and cling to the 
unperturbed orbit. Kaper & Wiggins (1993) showed that the transport and mixing for 
adiabatic forcing is confined to the area swept out between the extremes of the 
changing homoclinic loops, for instance the shaded area in figure 30. 

In the experiments to investigate potential mixing zones in complex flows and the 
crossover from adiabatic to non-adiabatic forcing, the inner cylinders rotate in a sine 
waveform (see (31)) with 8 = 8/n2. The maximum and minimum speed ratios of the 
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(4 (b) 

FIGUR~ 3 I .  Experimental dye advection patterns for slowly varying vortex mixing flow after 5 periods; 
RJR, = 4, e = 0.67, B = 2880°, and corotating cylinder motion. Cylinders move in a sine wave (see 
(31)) with c: = 8 / x 2 :  (a) T =  100 s, (b) T = 125 s, (c) T = 175 s, (d )  T = 250 s. 

cylinders are r = 8.32 and r = 0.12 and the range of r is such that no flow bifurcations 
occur (figure 9). The oscillation period T ranges from 100 to 250 s. It can happen for 
the longest experimental runs (several hours or so) that molecular diffusion of the dye 
noticeably blurs the experimental picture. Blurring by diffusion would be very difficult 
to separate in these experiments from the adiabatic broadening into mixing zones. In 
our experiments, though, adiabatic effects appear well before dye diffusion becomes 
noticeable and diffusion plays no role in the data shown in figures 31 and 32. 

Figure 3 1 shows the dye advection patterns in the VMF at four different time periods 
of oscillation. The angular displacements per period 8 of the cylinders in all cases are 
the same and each pattern in figure 31 corresponds to the same total angular 
displacement of the cylinders. The pattern in figure 3 1 (a) corresponds to relatively fast 
oscillation as studied in $4, and dye spreads by the action of unstable manifolds 
moving wildly in space. As the period increases, the unstable manifolds align with the 
homoclinic loops of the instantaneous streamline portraits and dye does not spread 
beyond the region swept by these homoclinic loops. It is worth noting that the mixing 
pattern in figure 31 ( d )  is of the shape as the potential mixing zone in figure 30. 

A digitization of sequences of pictures similar to those in figure 31 allows the 
calculation of fractional area coverage a, which in turn may be used to characterize the 
transition from adiabatic to non-adiabatic forcing. Figure 32 shows a versus 1/T for 
constant St = 0.04. There are two distinct regions in the graph. At low frequencies a 
is nearly constant as the dye is confined to the potential mixing zone, which seems to 
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FIGURE 32. Fractional area coverage us. 1/T for the vortex mixing flow showing the transition from 
adiabatic to non-adiabatic behaviour. The error bar indicates the experimental run-to-run variability 
in the area coverage. Corotating cylinder motion, protocol A, 0 = 2880", e = 0.670, RJR, = 4. 

be of nearly constant size. At higher frequencies dye escapes the potential mixing zone 
to mix in the rest of the VMF domain. The error bar in the figure indicates the run- 
to-run variability due to small variations in the initial dye placement and amount of 
dye used; the accuracy of an individual area measurement is about half that of the error 
shown. The transition frequency is very sharp, suggesting the existence of a critical 
manifold angle separating the slow and fast regimes. 

7. A complex test problem: optimum mixing conditions for the VMF 
In spite of all the recent advances in the characterization of chaotic advection there 

is still no optimum recipe to characterize and rank the mixing abilities of arbitrarily 
chosen flows. A measure of the difficulties in achieving such an objective are 
highlighted by means of a test case. The problem selected is to find the optimum 
eccentricity - all parameters other than e are held constant - giving the 'best' mixing 
in the VMF. By best mixing we mean the existence of the thinnest possible striations 
distributed uniformly over the domain. In general a well-mixed system corresponds to 
maximizing the average stretching and minimizing the standard deviation (Muzzio 
et al. 1991). A superficial analysis might suggest the use of one of the tools in $4 as a 
merit function to find the optimum e. However, the limitations of each tool, either 
failing at larger perturbations or being not feasible to compute, disqualify every 
dynamical tool considered in this paper from assuming the role of a 'perfect' merit 
function in a traditional optimization sense. Melnikov calculations of lobe area come 
closest to being useful as a merit function and in fact, do fulfil that role up to 
perturbations where the method breaks down. Unfortunately, better mixing is almost 
always found at larger perturbations. Nevertheless, since the Melnikov method is 
computationally least expensive, we go through a Melnikov example below. To 
uncover a truer approximation to the optimum, however, we then use a larger 
perturbation and apply the dynamical tools in a sequence to 'sieve' away most of 



236 S. C. Jana, G .  Metcalfe and J.  M .  Ottino 

Range of e 

1.000 

Poincari maps; 

0.333 

Computational 
expense 

I 

I t I 
0.633 0.800 

Manifolds; 

0.633 0.704 

distribution 

1 
Optimum e= 0.633 

FIGURE 33. Schematic of a 'dynamicdl sieve' used to search parameter space and find the optimum 
eccentricity for the vortex mixing flow through successive application of different dynamical tools. 
The computational expense increases (faster than linearly) for successive refinement of the optimum 
parameter range. The definition of a good mixing process changes at each level. Island elimination 
uses Poincark maps and elliptic periodic points to order 3 to remove non-mixing regions. Area 
coverage uses the extent of the unstable manifolds of periodic hyperbolic points to order 3 to remove 
mixing confinement. Stretching distributions indicate which parameter value for equal area coverage, 
gives the smallest fraction of thick striations. 

parameter space, leaving an approximate global optimum. Figure 33 summarizes the 
steps in the dynamical sieve, which are arranged in order of computational expense. 
The diagram has the look of an inverted pyramid with its tip pointing to the optimum 
value of e. At every level of the pyramid the definition of a good mixing process 
changes with the tool used to move from one level to the next. Companion experiments 
verify the results at each level of the pyramid. Removal of parameter space stops when 
experiments are no longer able to distinguish one value of e from another. 

The operating parameters for the VMF test problem are Y = 1, corotating cylinders, 
and protocol A. These parameters are kept fixed as an optimum e is sought. A 
perturbation angle of B = 360" is small enough to allow use of the Melnikov method 
described in $4.4. In the range 0.333 < e < 0.704, the unperturbed VMF with 
corotating inner cylinders exhibits double homoclinic loops emanating from the 
central hyperbolic critical point that enclose the inner cylinders and two heteroclinic 
loops emanating from the parabolic points on the outer cylinder, as shown in figure 
8(a, b). At e = $ the inner cylinders touch each other; this is a singular case for the 
BIEM and the flow cannot be solved. For e > 0.704, double homoclinic loops do not 
enclose the inner cylinders and are much smaller in size (figure 8r). Intuitively, in such 
cases, chaos will be localized; therefore, in calculating the lobe area using the Melnikov 
method we concentrate on the range 0.333 < e < 0.704 and evaluate the Ni terms in 
(28) for both the heteroclinic and homoclinic orbits. In all cases the term Nl is at least 
an order-of-magnitude larger than the other terms, so the lobe area p is given largely 
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FIGURE 34. Lobe area from the Melnikov method for 0 = 360°, RJR, = 4, sine wave, and corotating 
cylinder motion. The optimum eccentricity calculated using the sum of N ,  values of both heteroclinic 
and homoclinic orbits lies at e = 0.582. 

by N, .  Figure 34 shows a plot of N ,  for the homoclinic orbit and the sum of N ,  values 
for both the heteroclinic and homoclinic orbits as a function of e. The N ,  values for 
the homoclinic orbits show a maximum at e = 0.580 and that of the heteroclinic and 
homoclinic orbits together show a maximum at e = 0.582. The heteroclinic loops 
gradually dip towards the hyperbolic point with increase in e and when perturbed 
gradually increase the degree of chaos. This is reflected in the gradual increase in the 
values of N ,  for the heteroclinic orbit with e. However, the N ,  values for the 
heteroclinic orbits are much smaller than those for the homoclinic orbits and change 
the optimum only slightly. The optimum value of e obtained from the Melnikov 
method is valid for only small perturbations. However, at small perturbations chaos is 
confined to the neighbourhood of the homoclinic loops of the unperturbed system and 
the global mixing is poor. Therefore, we must operate at larger perturbations and use 
the other tools at our disposal to search for a true optimum. 

To continue the test problem, a perturbation value of 8 = 1440" is chosen because 
for these parameters and with e = 0.670 we have previously observed global chaos. The 
existence of islands indicates poor mixing. Therefore, we consider island elimination as 
the first step to finding an optimum. Larger islands are visually apparent in Poincare 
sections and smaller islands are determined by finding the elliptic periodic points. 
Figure 35 shows the Poincare sections for various eccentricities. If the Poincare section, 
which is an indicator of asymptotic structure, shows regular regions or islands, the 
short-time dye advection pattern of the same flow will show even larger islands. Thus, 
at this stage we can eliminate values of e that generate regular regions. From figure 
35 the optimum lies in the range 0.530 < e < 0.930. Next, we search for elliptic periodic 
points. After finding the elliptic points up to P-3, the range for the optimum is further 
narrowed to 0.633 < e 6 0.800. 

Parameter values that mix well spread dye over a large portion of the domain. Once 
islands are eliminated, we use area coverage comparisons to proceed. Calculation of 
manifold extent is the chief tool. As shown in figure 35, Poincare sections fore  = 0.670 
and e = 0.800 look equally chaotic. However, in order to determine which mixes better, 
we look for hyperbolic periodic points up to P-3 for both flows and calculate their 
manifolds, From the case e = 0.800, the manifolds of all periodic points are localized 
(see figure 23), so that even though stretching is high along the manifolds, the global 
mixing is poor. Similar circumstances apply to all flows with double homoclinic loops 
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FIGURE 35. Poiiicart sections for the vortex mixing flow with protocol A. RJR, = 4, and B = 1440" 
as a function of eccentricity: (a) = 0.40, (b)  e = 0.53, (c) e = 0.67, (cl) e = 0.80, (e) e = 0.93, which has 
given this flow the nickname ' smiley-face flow '. 

not enclosing the inner cylinders in their unperturbed flow, which happens at a flow 
bifurcation for e > 0.704 (figure 7). Next we perform experiments to see if the 
advection patterns reveal any information about a true optimum. In figure 
36 (a, b), identical initial conditions are used in the form of a straight line of dye injected 
along the y-axis. Also shown in figure 36(c,d) are the dye advection patterns for 
e = 0.766 and e = 0.930. Flow bifurcations have occurred for these latter two 
eccentricities and in both of them unperturbed homoclinic loops do not enclose the 
inner cylinders (see figure 7). Therefore, it is evident that mixing in the range e > 0.704 
is poor. Thus, the range of e containing an optimum is further reduced to 
0.633 9 e d 0.704. 

Further refinement within the range 0.633 < e < 0.704 is more difficult. The flows do 
not have any elliptic periodic points and calculating the manifold structures of the 
hyperbolic periodic points is not helpful at this stage for two reasons. (i) Flows at some 
values of e in the range possess a large number of periodic points even if only the 
periodic points up to P-3 are included. For example the e = 0.704 case has an array of 
hyperbolic points: 27 P-3 points, two P-2 points, and three P-1 points. (ii) In this range 
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FIGURE 36. Dye advection experiments with different eccentricities; protocol A, 0 = 1440°, and 
R,/R, = 4. (a) e = 0.670 after 6 periods, (b) e = 0.704 after 6 periods, (c) e = 0.766 after 8 periods, 
(d )  e = 0.930 after 15 periods. 

of eccentricities cumulative stretching along manifolds is of the same order and the 
manifold structures look similar. Figure 36(a, b) shows dye advection experiments for 
e = 0.670 and 0.704 respectively. The dye advection patterns are quite similar. Is it 
worth continuing? If experiments cannot distinguish between parameters, then 
perhaps, as far as an optimization problem goes, we have for all practical purposes 
finished. Let us look a little closer. Figure 37 (a, c) is a digitized versions of figure 36 (a,  
6) with the dyed area shown in black. If we calculate the fractional area coverage a, we 
find that both figures have a =  0.77, verifying the visual conclusion of equal area 
coverage. However, the thickest striations of a pattern contain the most dye and so are 
the brightest. Figure 37(b, d, repeats 37(a, c) but shows only the brightest quarter of 
the pixels. Now a clear distinction between the patterns emerges. Figure 37(b) at 
e = 0.670 has 1.6% of its area covered by bright/thick striations, mostly falling at the 
tips of folds, which are expected to be places of low stretching. In contrast figure 37(d)  
at e = 0.704 has 20 YO of its area covered by bright/thick striations. Quantitative image 
analysis has not been used extensively yet to analyse mixing patterns, and we are not 
able as yet to extract a full-blown striation distribution from a well-mixed pattern to 
make detailed comparisons with stretching calculations, though image analysis of 
experiments is clearly able to qualitatively distinguish different stretching distributions. 
Therefore, it may be deemed worthwhile for this problem to calculate stretching 
distributions (the most expensive tool ~ by three orders of magnitude - discussed in 54) 
for 0.633 < e < 0.704 to further narrow the optimum eccentricity range. 
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FIGURE 37. Digitized images of advection experiments for the vortex mixing flow in figure 36(a. b):  
(a ,  c) total area coverage in 6 periods, (b, d) area coverage by the brightest quarter of pixels showing 
the thick striations. (a ,  6) e = 0.670; (c, d)  e = 0.704. 

10000 

0 1.625 3.250 4.875 6.500 

log a 
FIGURE 38. Distribution of stretching values for the vortex mixing flow; RJR, = 4, B = 1440", 
protocol A, and corotating cylinder motion. dN(1og A) represents the number of particles between 
logh and logh+dlogh. , e = 0.633; --, e = 0.67, ----, e = 0.704. 

To compute a distribution of stretching values we uniformly distribute - 15000 
points in the flow domain and compute h at each point using equations (15) and (16). 
A plot of the stretching distribution is prepared following the methods of Muzzio et al. 
(1991). Figure 38 shows the stretching distribution for e = 0.633,0.670, and 0.704 after 
three periods. The distributions are bimodal with a sharp peak in the low stretching 
range which increases with increasing e. This implies that a larger number of points 
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FIGURE 39. Relative timing graph for dynamical tools with computational times scaled by that for the 
Melnikov method. Note the unequal scale for stretching distributions. For the vortex mixing flow a 
typical calculation of lobe areas using the Melnikov method takes approximately 10 CPU nlinutes on 
an SGI-R4000 workstation. 

experience small stretching in the e = 0.704 case than in the e = 0.670 or e = 0.633 
cases. Calculating the percentage of particles with h 2 100 we find that e = 0.633 has 
81 Yo; e = 0.670 has 79 Yo; and e = 0.704 has 66%. This is in qualitative agreement 
with figure 37 in that e = 0.704 has the larger fraction of thick striations. This places 
the optimum eccentricity close to e = 0.633. However, one should note that the 
calculation of stretching distributions is much costlier than the calculation of area 
coverage from experimental advection patterns (figure 39) and any information 
anticipated from knowledge of a stretching distribution should be carefully weighed 
against the time costs. We note that these extreme costs could in principle be 
considerably reduced because stretching distribution calculations are eminently suitable 
for parallelization. 

To summarize the relative merits of the dynamical tools used in this problem, we 
note several important points: (i) a PoincarC section of a flow may look globally 
chaotic but it should not be trusted to give the short-time mixing behaviour of the flow 
because the Poincari section does not contain any rate information; (ii) stretching 
along manifolds does not correlate with a dispersed global mixing pattern. Two flows 
may differ appreciably in the amount of stretching along manifolds but the flow with 
manifolds distributed throughout the space is the better mixing flow, e.g. r = 0.670 
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exhibits much better mixing than e = 0.800; (iii) stretching distributions are very 
expensive yet may not be highly discriminating, e.g. there is just a 2 %  difference 
between e = 0.633 and 0.670. Also stretching distribution functions are not entirely 
straightforward to interpret and more work scems necessary in this regard. We may, 
however, note that improvement in quantitative image analysis techniques will 
probably make experiments more attractive in practical situations than calculating 
stretching distributions. 

8. Conclusions 
Comparative experimental and computational studies conducted on two new 

flows - a vortex mixing flow and multicell flows in slender cavities - provide a global 
picture of the virtues and limitations of current dynamical tools, especially as they 
apply to complex Stokes flows. Experiments and numerical analysis - boundary 
integral equation methods appears to be ideally suited for this task - show remarkable 
agreement with each other. This is, however, to be expected, as there are no 
approximations involved in the simulations. Nevertheless the overlap is not complete. 
Dye advection experiments, while relatively straightforward experimentally, cannot be 
really easily duplicated by direct simulations. A knowledge of the way structure builds 
up in the system - new striations nested within old striations - allows, however, for 
excellent matching between experiments and computations (see figure 18). 

Conclusions, recommendations, and evaluation of the relative merits of techniques 
are detailed throughout the paper, and here we summarize a few points regarding the 
state of understanding of chaotic advection in Stokes flows. First, it is apparent that 
the development of suitable heuristics for the understanding of chaotic flows, even in 
two-dimensions, is far from complete and several difficulties might be encountered. For 
example, contrary to commonly accepted wisdom, higher-order periodic points can be 
more important than period-one points in establishing the advection template and 
extended regions of large stretching. This is not welcome news as the computation of 
higher-order periodic points cannot be easily inferred from steady velocity fields. There 
is good news though. We demonstrate that a broad class of forcing functions - as long 
as they produce the same displacement per period - produces the same qualitative 
mixing patterns, and that even though none of the existing dynamical tools alone can 
successfully fulfil the role of a merit function. the collection of currently available tools 
can be applied successively as a dynamical sieve to uncover a global optimum. A 
detailed example provides a ranking through the cost per step associated with each tool 
(see figure 39). 

How should a new flow be analysed? A few recommendations can be made. The first 
issue is to try to qualitatively predict the correct streamline pattern without resorting 
to the expense of exact computation. Intuition based on experience is invaluable in this 
regard but topological relations constraining the number of physically realizable 
choices are extremely useful as well. A computation yielding boundary vorticity, and 
hence the location of parabolic points, is in general enough to infer the entire velocity 
field. If the object is to mix, it should be remembered that the mixing behaviour of the 
flow is dictated by the amount of streamline crossing and this in turn depends strongly 
on the flows’s position in the bifurcation diagram as the forcing is changed. However, 
crossing alone does not guarantee rapid mixing. Flow regions confined by streamlines 
anchored to parabolic points are typically associated with low circulation rates and 
compartmentalized mixing. 

The second issue to consider is both the symmetries of the flow and the symmetries 
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of the forcing protocol. The observation phase is critical. If the observation phase is 
chosen poorly, flow symmetries are hidden, and analysis becomes needlessly 
complicated. Symmetries should be exploited to reduce computational workloads. In 
this regard it is important to remember that while Poincare maps provide the least 
expensive asymptotic picture of the global behaviour of a flow and a rough estimate 
of mixing characteristics and how they change with different protocols and parameter 
values, they can also lead to substantial errors when trying to anticipate results of 
short-time dye advection experiments. Poincare sections always err on the conservative 
side: regular regions in Poincari plots appear as even larger islands in dye advection 
experiments ; if PoincarC sections do not exhibit any regular regions, one cannot 
conclude that the flow mixes globally, because particle paths may appear regular for 
many periods, taking on the ‘look’ of chaotic motion only after hundreds or even 
thousands of periods of motion. 

The next issue to consider is low-order periodic points and their associated 
manifolds. Techniques to compute them accurately have been provided and manifolds 
can be computed accurately for about l&15 periods. It is wise to compare the 
stretching values along the unstable manifolds rather than comparing just the 
eigenvalues of the periodic points. High stretching rates are important for rapid 
mixing. Stretching rates, unfortunately, do not always indicate the extent to which 
manifolds will be distributed throughout the flow region; manifolds with high rates of 
stretching might in fact be confined to relatively restricted regions. 

Finally, the unstable manifolds must be calculated for a reasonable number of 
periods as to allow for interaction with other periodic points since this is what in fact 
controls the transport. The Melnikov method and adiabatic techniques are potentially 
very useful but care should be taken that conditions for applicability are valid on 
analytical and experimental ends. Stretching distributions, while providing a wealth of 
information, should be used sparingly. They are extremely expensive and often hard to 
interpret. It is likely that improvement in quantitative image analysis techniques will 
make direct experiments more attractive in practical situations than calculating 
stretching distributions. 

All our examples involve bounded flows driven by boundary motions without 
change of geometry, i.e. boundaries moving tangentially to themselves. A second class 
of bounded flows might involve area-preserving time-periodic changes of geometries 
(e.g. boundaries displaced normal to themselves (Jana, Tjahjadi & Ottino 1994)). This 
class of flows requires more computational expense but, except for this issue, many of 
our observations can be extended without modification to flows involving changes of 
geometry as well. Open flows, such as those involving backward step flows or flows 
induced by passing a flow over a wedge or a cavity involve several issues not accounted 
for in this presentation, even though several of the ideas presented here might be 
valuable in this regard. 

This work was supported by the Department of Energy, Basic Energy Sciences. 

Appendix A. boundary integral equation methods 
The Stokes equations along with the equation of continuity form a set of partial 

differential equations which may be transformed into integral equations in terms of the 
boundary velocities and the strength of unknown point forces or point dipoles 
distributed along the boundaries. The integral equations have the advantage of 
reduced dimensionality: a two-dimensional flow can be studied in terms of line 
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integrals. A set of linear algebraic equations results upon discretization of the integral 
equations which are solved by direct or iterative methods to obtain the strength of the 
point forces or dipoles. The velocity field at any interior point is then obtained 
analytically from these point forces or dipoles without any need for interpolation. 

The VMF is solved using the single-layer formulation of BIEM. The usefulness of 
alternative formulations, for example the double-layer formulation, is discussed in 
detail in Kim & Karilla (1991) and Pozrikidis (1992). Following Higdon (1985) the 
integral equations can be written as 

u,(x,) = c (S& - x,) f j (x)  - Tl,& - x,) u,(x) n,) dS; i,j, k = 132, (A 1) s, 
where u, is the ith component of the velocity,& is the jth component of the point force, 
x, is afieldpoint or a point inside the fluid, x IS a point on the boundary, n is the normal 
to the boundary pointing out of the fluid, and nk is its kth component. S is the 
boundary of the domain and 

is the free-space Green’s function, where 2 = x-x , ,  r = 121, and q,, is the stress tensor 
associated with the Green’s function. The factor C in (A 1) is 1/4n,u when the point xo 
is inside the fluid and 1/2n,u when the point xu is on the boundary of the domain; ,u 
here is the shear viscosity of the fluid. 

In this work, the boundary of the flow domain is discretized using straight line 
segments and the values of u and f are taken to be piecewise constant along each 
segment. The discretized form of (A 1) is 

St,($) = atJ In r -2% i J / r 2  (A 2) 

N 

u,(x,> = C A,, (xm, xn>f,(xn> + C Btj(xm7 x,> uj(xn)7 (A 3)  
n=l n=l  

where x,  is a point in the flow and x,  is the discrete boundary point at the middle of 
segment n. The expressions for A,, and Bt3 are 

B&,, Xn> = - c r2 ~ . j k ( x ,  -xn - t t ~  nk dt,  (A 4b) 
-6J2 

where 6, is the length of the nth boundary segment, t and n are unit tangent and normal 
vectors to the nth segment, and 5 is the local spatial variable. Estimates of the error due 
to discretization of the integral equation and piecewise smooth approximations of u 
andf along the segments are discussed in Higdon (1985) and Pozrikidis (1992). 

The terms A j j  and Bij are evaluated using numerical quadrature. Considering the 
point x ,  on the boundary, the system of equations (A 3) are solved using LU- 
decomposition to obtain the strength of the point force$ Oncefis obtained, the 
velocity at any interior point is calculated from (A 3 )  considering the point x, inside 
the fluid. 

Appendix €3. Symmetry relations of flow F’ FA with corotating cylinder 
motion 

cylinder motion can be written as 
The mapping of a point x,  under flow FBFA using protocol PA and co-rotating 

xn+l = M x n ,  (B 1) 
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where M = FBFA, where FA and F. are the mappings described by flows A and B 
respectively. In mapping M, flow A is applied first followed by flow B. Exploiting the 
symmetry relations of table 1, 

M = FB FA = S,  FA1 S, S,  F-,lS, = S,  F,' S, = S,(F, F4)-'SV, (B 2) 

where S,  S,  = 1 .  So the mapping M has a time-reversal reflectional symmetry about 
the y-axis and its fixed line of symmetry is the y-axis. Another symmetry can be derived 
in a similar fashion by using the self-symmetry relations given in table 1 : 

F;1' S, = S(FB FJ' S-', (B 3) 

where S,  S,  = 1 and S = FB S,. So the flow has a non-trivial symmetry, S = 8'' S, and 
thejixed line of this symmetry or symmetry line {X) is obtained by solving 

M = FB FA = S, 5' S, S ,  G1 S, = S, 

S{Xi = (TI- (B 4) 

It can be easily shown that the solution of (B 4) is {X) = F' {x}, i.e. the symmetry line 
(X) is a curved line obtained by advecting the x-axis by 2 b. 
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